
GETTING STARTED 

WITH CF'S DOCKER IMAGES

Charlie Arehart, Independent Consultant

CF Server Troubleshooter

charlie@carehart.org

@carehart (Tw, Fb, Li, Slack, Skype, GitHub)

Updated Sep 30, 2019

Wifi Access

AdobeSummit2019

Adobe2019 

(case-sensitive)



Charlie Arehart

CArehart.org

@carehart

WHAT WE WILL BE TALKING ABOUT TODAY

 As session description made clear:

 Getting started with Docker

 Getting started with Adobe’s CF Docker images

2



Charlie Arehart

CArehart.org

@carehart

WHERE YOU MAY BE COMING FROM

 May be a developer, admin, tester, team lead, business person, or other

 As for your background with Docker, I am suspecting either:

 You may never had heard of docker (and just came out of curiosity)

 Or have heard of it but never really understood it

 Or tried to install it, had trouble and gave up

 Or got it working but never used it with CF images

 Or only have used the Ortus Commandbox (or Lucee) CF images

 I’m trying to speak to all these audiences today, so bear with me ☺

3



Charlie Arehart

CArehart.org

@carehart

WHO AM I?

 20+ years in CF, 35+ in enterprise IT

 Independent consultant, providing server troubleshooting

 Active in the community (forums, portal, mailing lists, social media)

 My contact info is on front slide

 Slides will be available at carehart.org/presentations

4



Charlie Arehart

CArehart.org

@carehart

DID YOU KNOW THERE EVEN ARE 

ADOBE-PROVIDED CF IMAGES?

 …for those already familiar with docker, I mean here

 You’d be forgiven for not knowing. They don’t get much press

 For a few years the Ortus-provided CommandBox image has existed

 Most resources on the web regarding CF and Docker refer to them

 Adobe’s are not listed at dockerhub (the default “registry” for Docker)

 Instead they are at bintray.com

 Let’s take a look at the site

5



Charlie Arehart

CArehart.org

@carehart

WHO’S EXCITED ABOUT DOCKER? 6



Charlie Arehart

CArehart.org

@carehart

CAN I EXCITE YOU ABOUT DOCKER?

 Let me run some examples

 Will explain more later what I did, in more detail

7



Charlie Arehart

CArehart.org

@carehart

HOW EASY IS IT TO INSTALL DOCKER?

 To run Docker, you do need to install it

 There are installers for Linux, Windows, and MacOS

 For Windows Home and MacOS before Sierra, must use Docker Toolbox option

 Those on Windows 10 Pro and above, or above MacOS Sierra, use Docker Desktop

 Install just takes minutes, and once done can run “docker’ commands…

8



Charlie Arehart

CArehart.org

@carehart

YOUR FIRST DOCKER IMAGE

 Let’s do that, with available “hello world’ image: docker run hello-world

 Will be downloaded if not run before

 Shows “hello” message, confirming that all is well

 What happened?

 Docker checked to see if I had the image already downloaded

 If not, it downloaded it from the default “registry”, dockerhub.com

 A “container” for the image was created, then run, and it stopped

9



Charlie Arehart

CArehart.org

@carehart

HOW TO USE IT WITHOUT INSTALLING IT

 For testing out Docker/playing with it

 Free site: play-with-docker.com

 For development

 Many cloud platforms let you run docker (via “container services”) at low-cost

 For production

 Such cloud providers also offer “orchestration” of containers, such as via Swarm, 

Kubernetes, as we will discuss again later

10



Charlie Arehart

CArehart.org

@carehart

WHAT IS DOCKER

 Relatively new platform, released as open source 2013

 Helps you build, ship and run applications, pretty much anywhere 

 Across disparate platforms, OS’s, bit -levels, processors and more

 Becoming prevalent in IT as an alternative way to run and deploy server software

 Likened to vm’s (not a great analogy)

 Better to think “packaged application” (not itself really new with Docker)

11



Charlie Arehart

CArehart.org

@carehart

EXPLORING NEW SOFTWARE 

VIA DOCKER

 Changes the normal approach: rather than install, just pull/run

 Remove when done or if no longer interesting (will see how, later)

 Can also preserve data you may create with/within the container (more later)

 Important: most Docker images are usually Linux

 But Docker for Windows or MacOS lets you run them!

 That’s one of the game changers

 Allows you to explore things you might normally not have considered

 Let’s see some examples

12



Charlie Arehart

CArehart.org

@carehart

DOCKER IMAGES 

FOR NEARLY ALL SERVER SOFTWARE

 Can be used to run server software you might usually work with

 Web servers (like Apache, IIS, and nginx) 

 Databases (like MySQL, SQL Server, Postgres, and more)

 Nosql datastores (like couchbase and Mongodb)

 And also such things as:

 Reverse proxies (like haproxy and Træfɪk)

 Caches/accelerators (like memcached and Varnish)

 Search engines (like Solr and ElasticSearch)

 Messaging brokers (like rabbitmq and rocketmq)

 and more

13



Charlie Arehart

CArehart.org

@carehart

DOCKER IMAGES 

FOR NEARLY ALL SERVER SOFTWARE (CONT.)

 Docker images also exist for application server software (as alternatives to ColdFusion) such as:

 Tomcat

 Node.js

 Perl

 PHP

 And more

 There are even Docker images for languages, like: 

 Python

 Ruby

 Golang

 Groovy

 Haskell

 Erlang

 And more

14



Charlie Arehart

CArehart.org

@carehart

DOCKER IMAGES 

FOR NEARLY ALL SERVER SOFTWARE (CONT.)

 And even JVMs, like OpenJDK, Oracle JDK, Amazon Coretto JDK

 And even Linux distros, like Centos, Debian, Ubuntu, more

 They all share the same Linux kernel, which Docker provides

 Finally, also packaged applications, including:

 Monitoring solutions (ELK stack, and more)

 Blogging software (Ghost, and more)

 Content management systems (like Wordpress and Drupal) 

 Atlassian tools like BitBucket, Confluence and Jira

 and more

 And best of all, you can use them with CF easily, for example…

15



Charlie Arehart

CArehart.org

@carehart

CONSIDERING REDIS, FOR USE WITH CF 

FOR INSTANCE

 Redis is an open source distributed, in-memory key-value database

 CF2016 lets you use it for external session storage

 CF2018 lets you use it (and memcached, etc.) as external distributed cache engines

 Windows users will find it challenging to find decent installer for Redis

 No problem with Docker, which makes it almost trivial to use on any OS

 We’ll see this later today, when we show integrating CF images with others

16



Charlie Arehart

CArehart.org

@carehart

RUNNING YOUR FIRST CF IMAGE

 Let’s now try to run the Adobe CF image

 docker run eaps-docker-coldfusion.bintray.io/cf/coldfusion

 But you will get an error: Adobe requires acceptance of the EULA

 We can do that using Docker’s feature to pass in environment variables

 We can do that using a Docker “-e“ argument, and pass in an admin pw to use also

 We will also to expose CF’s built-in web server port, 8500 as 8502

 Let’s also for now add also a --rm (two dashes) and a -d, also explained later

 docker run --rm -it -p 8502:8500 -e password=123 -e acceptEULA=YES --rm -d 

eaps-docker-coldfusion.bintray.io/cf/coldfusion

17



Charlie Arehart

CArehart.org

@carehart

VIEWING THE RESULT OF THE CF IMAGE 

IN A BROWSER

 Let’s now view the result

 http://localhost:8502

 Will see display of CF built-in web server docroot, which allows directory display 

by default

 When CF image starts, so does that built-in web server, at port 8500 by default

 We told Docker to expose that port to our host as 8502 (for kicks)

 Where is the web server root? It’s inside the container

 We will discuss later how to cause it to run our own files

 You could try to drill down to the CF Admin now

18



Charlie Arehart

CArehart.org

@carehart

IMAGE LABELS: TRACKING DIFFERENT 

VERSIONS OF AN IMAGE

 Docker uses “labels” to distinguish one version of an image from another

 The vendor who creates the image chooses the label when building it

 We didn’t use one just now, but could

 There is a latest-2018 and latest-2016

 There are labels for the 5 versions of CF2018 so far, 2018.0.1 through 5, and even a .0

 And for 2016.0.6 through the latest, 12 (from this week)

19



Charlie Arehart

CArehart.org

@carehart

“LATEST” LABEL

 There is also a “latest” label is a convention, which some love, some hate

 Typically a vendor will post their latest current version with that label, but may not

 Using “latest” with CF image does currently get the latest CF2018 update, 5

 What if you already have pulled/run a “latest” image in the past…

 and the vendor puts a new version up with that label?

 If you “run” with that label, nothing changes. Will use the one you pulled

 If you “pull” with that label, that WILL check and in that case WOULD download new 

20



Charlie Arehart

CArehart.org

@carehart

HOW ADOBE COLDFUSION IS LICENSED 

FOR USE IN CONTAINERS

 Being a commercial product, Adobe CF is subject to its EULA

 First, note that development use of CF is always free, including Docker image

 As for production use of CF on Docker, no current mention in EULA

 See CF image docs which point to FAQ where Adobe does address this

 CF Enterprise: can use with 8 Docker instances, per license

 CF Standard: must license each use of a Docker instance as normal

 Not necessarily a show-stopper: most use Docker for dev, test

 And may deploy their apps in some way other than with Docker…

21



Charlie Arehart

CArehart.org

@carehart

HOW ADOBE COLDFUSION IS LICENSED 

FOR USE IN CONTAINERS (CONT)

 Good news coming in CF2020

 Adobe announced last month plans to improve Docker licensing

 As well as Docker image size, startup time, and more

 Google coldfusion docker licensing to find my blog post on this

 Finally, note that CF images deploy by default as if in Trial mode

 And like normal will revert to Dev edition after 30 days, unless license added

 License can be added in admin or another Docker “environment variable”

 Also implemented in “Developer Profile”

 Can turn that off, turn on “secure profile” in admin or via another env var

22



Charlie Arehart

CArehart.org

@carehart

HELP FROM 

THE CF DOCKER IMAGE ITSELF

 Can get help from the CF Docker images themselves, using “help”

 docker run --rm eaps-docker-coldfusion.bintray.io/cf/coldfusion:latest-2018 help

 Note: it’s not any Docker convention for an image to offer such “help”

 Note also the start of that help shows various other “commands” CF supports…

23



Charlie Arehart

CArehart.org

@carehart

GETTING CF VERSION OF DOCKER IMAGE: 

THE “INFO” COMMAND

 Lets you see what version of CF (and CF update level) is in the image

 Especially with a tag like 2018-latest, to see which version that is

 Let’s try it:

 docker run --rm eaps-docker-coldfusion.bintray.io/cf/coldfusion:latest-2018 info

 There is also a commands for CLI

 In 2016 that allowed running CFML files from the CMD line

 In 2018, that added a true REPL as well. Will leave you to explore these

24



Charlie Arehart

CArehart.org

@carehart

BASIC CF CONFIGURATION ENV VARS

 The CF image “help” (and doc page) showed also several env vars for CF

 Let’s look them over

 password=<Password>

 serial=<ColdFusion Serial Key>

 CF serial number (aka “license key”), to enable CF to run as Standard or Enterprise

 This and next var were not available until Docker image labels 2016.0.11 and 2018.0.2

 previousSerial=<ColdFusion Previous Serial Key (Upgrade)>

 Serial number for your previous version, if one above is "upgrade" license, which 

requires you to also specify previous version serial number

25



Charlie Arehart

CArehart.org

@carehart

ENV VARS TO CONFIGURE CF SETTINGS

 These (like the last) are things we are asked during install of CF, but no installer

 enableSecureProfile=<true/false(default)>

 configureExternalAddons=<true/false(default)>

 configureExternalSessions=<true/false(default)>

 More on these two and related vars, coming up very shortly

 language=<ja/en (Default: en)>

26



Charlie Arehart

CArehart.org

@carehart

ENV VARS TO CONFIGURE 

OTHER CF SETTINGS

 setupScript=<CFM page to be invoked on startup. Must be present in the 

webroot, /app>

 Can run any CFML at all, such as Admin API

 Will see this and other ways to auto-configure a CF Docker container, later

 setupScriptDelete=<true/false(default) Auto delete setupScript post execution>

 What about env var for editing JVM config?

 Sadly there is none (Tomcat’s image has one, CF’s does not)

 Hope this is addressed in CF2020

27



Charlie Arehart

CArehart.org

@carehart

ENV VARS TO CONFIGURE 

THE CF ADD-ONS SERVICE

 Add-on service is optional during normal install

 Runs CF’s Solr (test index) engine for use with CFINDEX/CFSEARCH, etc.

 And CF’s PDFG (html-generating webkit implementation), for CFHTMLTOPDF

 If enabled in Docker with configureExternalAddons=true, can also set: 

 addonsHost=<Addon Container Host (Default: localhost)>

 addonsPort=<Addon Container Port (Default: 8989)>

 addonsUsername=<Solr username (Default: admin)>

 addonsPassword=<Solr password (Default: admin)>

 addonsPDFServiceName=<PDF Service Name (Default: addonsContainer)>

 addonsPDFSSL=<true/false(default)>

28



Charlie Arehart

CArehart.org

@carehart

ENV VARS TO CONFIGURE 

THE CF EXTERNAL SESSIONS FEATURE

 CF2016 added option to store CF session variables in a Redis server

 can be setup as another image or as available externally to Docker

 If enabled in CF Docker image using configureExternalSessions=true, can set:

 externalSessionsHost=<Redis Host (Default:localhost)>

 externalSessionsPort=<Redis Port (Default:6379)>

 externalSessionsPassword=<Redis Password (Default:Empty)>

29



Charlie Arehart

CArehart.org

@carehart

CONFIGURING CONTAINER 

VIA ENV FILE

 We’ve been passing env vars on docker run

 Mentioned previously that docker supports passing them in as a file, a .env file

 Plain text file, that lists env var=value pairs on separate lines

 Example: c:/coldfusion.env

 acceptEULA=YES

 password=123

 Docker run offers --env-file arg

 docker run -p 8500:8500 --env-file c:/coldfusion.env -d --rm eaps-docker-

coldfusion.bintray.io/cf/coldfusion:latest-2018

30



Charlie Arehart

CArehart.org

@carehart

DIFFERENT VARIANTS OF 

CF DOCKER IMAGES

 Before we move on to discussing the CF Docker images further, take note

 Ortus also offers CF Docker images (more in a moment)

 Anyone here using those? Expected us to be using those instead?

 There are many resources on using CF and Docker that way, not with CF images

 Much of what we discuss today applies to Docker in general, and thus those also

 Also, may find other “CF” images on Dockerhub: from private folks, self-built

 Focus here is obviously on Adobe CF images

 But let’s look briefly at the Ortus image

31



Charlie Arehart

CArehart.org

@carehart

ORTUS COMMANDBOX CF IMAGE

 See https://hub.docker.com/r/ortussolutions/commandbox

 See available env vars, options

 Available for CF2018, 2016, and 11, as well as Lucee

 Quick example: docker run -p 8080:8080 ortussolutions/commandbox:adobe2018

 It creates CF Admin password of its own, if none passed in via config file

 Visit via normal CF Admin URL (their image uses nginx, does not expose dir listing)

 Other advantages

 Different env var options

 Additional config options: server.json, cfconfigfile, box.json

 Option for no admin (headless)

 To name a few

32



Charlie Arehart

CArehart.org

@carehart

ORTUS COMMANDBOX CF IMAGE 

(CONT)

 Some Adobe CF image advantages/differences of note

 Configure via car

 Config script option, option to delete that after start

 Env vars for serial number, enabling sec profile, enabling/config of redis sessions, 

enable/config of add-ons, etc

 Availability of those other CF images: addons, pmt, api mgr

 What about differences in startup times, sizes?

 Once you have the Ortus Docker image obtained for CF, it’s about the same for both

33



Charlie Arehart

CArehart.org

@carehart

MID-WAY CHECKPOINT

 At this point we now have 3 running CF containers, at 8500, 8501, 8502

 How would you know? I’ll show you, and how to manage them

 But note how easily we have 2 CF “instances”

 You couldn’t run the CF installer twice on one machine

 Yes, CF Enterprise/Trial/Dev supports multiple instances

 But this was again faster, easier—and not permanent

 Now’s a good time to talk about commands to manage docker

34



Charlie Arehart

CArehart.org

@carehart

LISTING CONTAINERS

 Listing containers: docker ps (try it)

 About container identifiers: container id, image name, container name

 Name chosen randomly, unless you set, as we will see how later

 We will use id or name to refer to containers in later commands

 Listing stopped containers: docker ps –a (try it)

 Notice all the stopped containers we have

 Would have had more but recall we used “--rm“ arg once. Removes on stop

 Will learn how to remove stopped ones soon

 More recent versions of docker support also docker container ls

 Accepts same args, produces same output

35



Charlie Arehart

CArehart.org

@carehart

GETTING HELP FOR DOCKER 

COMMANDS

 Good time to take a detour to show how to get help for docker commands

 Usually can add --help to the command, so docker ps --help

 Can also get list of all Docker commands, with docker --help, or just docker

 Can be overwhelming. Really, only a handful of commands are used often

 Better still, see excellent online Docker help, like

 https://docs.docker.com/engine/reference/commandline/ps/

36



Charlie Arehart

CArehart.org

@carehart

STOPPING CONTAINERS

 Recall we found our CF and other containers running. What if we’re done?

 Can stop a container with docker stop <container>

 Can use container name or container id, obtained with docker ps

 Let’s stop our first CF instance

 Can kill a container with docker kill <container>

 Kill is more abrupt than stop, as stop can wait up to 10 seconds for graceful shutdown

 Try killing the other CF instance (difference compared to stop will vary)

 It’s pretty annoying typing those long container names or ids…

37



Charlie Arehart

CArehart.org

@carehart

PRO TIP 1: NEED ONLY TYPE PART OF ID

 Wonderful shortcut: just need enough chars for id (not name) to uniquely identify

 So if only one container had an id starting with c1, can use just docker stop c1

 Try it for one of the CF containers we left running. Sweet!

 This applies to all commands that act on containers

38



Charlie Arehart

CArehart.org

@carehart

YOU CAN START A STOPPED 

CONTAINER; RESTART A RUNNING ONE

 Use docker start <container>

 Will simply start it again, unless something would prevent that

 Can also restart a running container: docker restart <container>

 As expected, will stop and then start it

 And the content within it remains as it was before stop

 Let’s restart a CF container, after first setting a setting in the CF Admin, like req timeout

39



Charlie Arehart

CArehart.org

@carehart

REMOVING STOPPED CONTAINERS

 What if you really no longer need a stopped container?

 Recall that ps –a shows those stopped but still existing

 Can remove stopped containers with docker rm <container>

 Again using name or containerid (or a unique starting portion of that id)

 Let’s try it

 “modern” name is docker container rm <container>

 Want to remove all stopped containers? docker container prune

 See docs for more on -f arg, for filtering what containers are pruned

 Recall also that the --rm argument, on docker run, will remove container on stop

 Note that stopping docker or your host will stop, but not remove, containers

40



Charlie Arehart

CArehart.org

@carehart

PRO TIP 2: CAN LIST MULTIPLE IDS AT 

ONCE

 You will often find you have several stopped that you want to remove

 But you may not want to use container prune (of all, or figuring a filter to use)

 Check this out: you can name multiple ids (or enough of id to be unique)

 So could do something like docker rm c1 23 5f

 Let’s create a few hello-world images to test that!

 Works also on stop command, and some others

41



Charlie Arehart

CArehart.org

@carehart

WHAT HAPPENS TO INFO “IN” 

CONTAINER WHEN REMOVED

 We’ve seen that a stopped container can be restarted, and still shows info 

“inside it”

 But what happens when you remove a container?

 In that case, the info inside the container (like the container itself) is “gone”

 This argues for containers to be stateless: to not have changes made, where their 

loss would be a problem

 An analogy of cattle vs pets is often used for this

 But what if you do need to change (and save) data in a container?

 There’s a feature for that, coming up soon

42



Charlie Arehart

CArehart.org

@carehart

MANAGING IMAGES

 Focus to now has been managing containers, now let’s discuss images

 Many commands have parallels

 To list all Docker images you have: docker image ls

 or just docker images (note that docker containers does not exist, for now)

 And as with docker ps, see --help or online help for available args

 To remove an image: docker rmi <image> (image name/label or id)

 Removing image does indeed remove the image from your docker host

 Does not work with only partial imageid, like docker ps and rm

 More modern variant: docker image rm <image>

 docker image prune

 Can removes all unused and/or “dangling” unused images. See docs for more

43



Charlie Arehart

CArehart.org

@carehart

AVAILABLE UI’S TO MANAGE DOCKER 

CONTAINERS, IMAGES

 While cmd line is king with Docker, not everyone loves it

 Lots to remember, though in time it becomes natural—and remember pro tips!

 But there are options for UI-based docker mgt of containers, images

 Most popular may be portainer

 Try this:

 docker run -d -p 9000:9000 -v portainer_data:/data portainer/portainer

 Then visit localhost:9000 to see its ui (choose a password on first visit)

 If you use VisualStudio Code, see its nice Docker plugin

44



Charlie Arehart

CArehart.org

@carehart

CONFIGURING VOLUMES

 Volumes are an important feature in Docker

 Allows you to “poke a hole” in the isolation of container files from host files

 Using them allows things like run your own code in a web server or in CF

 Or storing data modified by container across container removals (databases, logs, uploads)

 Another topic worth of perhaps a day, but let’s show a basic use

 docker run has a –v arg, can be used to map a folder on host to one in container

 Recall that the CF image “help” showed an available /app folder

 This is where that CF built-in web server looks for code

 So we could run a CF image telling it to map a folder on our host to that…

45



Charlie Arehart

CArehart.org

@carehart

CONFIGURING VOLUMES

 Let’s say we had webcode at c:\inetpub\wwwroot

 We could point to/”mount” that as –v c:/inetpub/wwwroot:/app

 Windows users: note need to use / instead of \

 If we do that with CF docker image, we will run code in that folder

 And still have available CFIDE folder, for use by admin

 See much more in docker docs, resources about other uses of volumes

 Concept of named volumes

 https://docs.docker.com/storage/volumes/

 Technically, -v is a less powerful/less flexible “bind mount”

 https://docs.docker.com/storage/bind-mounts/

 Also, one container can mount volumes from another, with --volumes-from

46



Charlie Arehart

CArehart.org

@carehart

BUILDING IMAGES

 All discussion to this point has been about configuring container at run time

 Docker also lets us create our own image

 Can be useful in many cases

 Involves creating a “dockerfile”, in which you specify directives to build it

 Is simple in concept and execution

 In interest of time, I’ll leave that as an exercise (see example in Adobe CF docs page)

47



Charlie Arehart

CArehart.org

@carehart

SAVING CONFIGURED STATE: 

DOCKER COMMIT

 Finally, what if you wanted to save the state of an image, once configured?

 Can use docker commit

 Will create new image, based on one named, with new name

 Beware, it will be as large as or could be bigger than the original

 Recall ways to manage images

 Cold then push that modified image to a registry with docker push

 Do beware not to push to public registry any image with sensitive config data

48



Charlie Arehart

CArehart.org

@carehart

CF IMAGE’S CAR IMPORT FEATURE

 First option that CF provides is to use the CF “CAR” export/import feature

 Has been in CF Admin in Standard/Enterprise (and Trial/Dev) since CF11

 Prior to CF11, was only Ent/Trial/Dev

 If you create such a .car file (from some CF admin)

 Can then place that .car file in a folder mounted as volume to image’s /data 

directory

 Automatically imported during startup. Demo?

49



Charlie Arehart

CArehart.org

@carehart

CF IMAGE’S “SETUP SCRIPT” FEATURE

 The second option is that env var for setupScript

 This would name a cfm file, expected to be in image’s /app folder (or volume 

mounted to it)

 In that template, can run any CFML, but most likely use is for CF Admin api

 This is a powerful set of CFCs (and their methods) that can support doing pretty much 

any CF admin task, programmatically 

 Added in CF7, not used widely in my experience

 See my blog post: 
https://www.carehart.org/blog/client/index.cfm/2018/1/3/great_start_on_adminapi_docs

 Remember also that setupScriptDelete env var

 If you may desire to delete the named file from container once it’s started

50



Charlie Arehart

CArehart.org

@carehart

CFCONFIG

 Another useful option for configuring admin settings is cfconfig, from Ortus

 Including editing, extracting, comparing and doing other options

 Originally a commandbox module, can be used with more than that

 Is built-into Ortus Commandbox docker image, but not CF’s, though you could add it

 See https://cfconfig.ortusbooks.com

51



Charlie Arehart

CArehart.org

@carehart

MANAGING MULTIPLE IMAGES

52



Charlie Arehart

CArehart.org

@carehart

ABOUT DOCKER COMPOSE

 Docker compose is a tool to facilitate starting/managing groups of images

 Mostly a development tool (a “first step” toward orchestration)

 Organizing several configuration steps into one file

 A yml (yaml) file. Just plain text, quite easy to understand

 Docker compose (and docs) define the format, simple examples will explain

 (CF Docker help page has some rather obtuse examples)

 Especially useful for organizing multiple related images, as we shall see

 We use docker-compose up command, optionally naming yml file

53



Charlie Arehart

CArehart.org

@carehart

DOCKER-COMPOSE 

OF JUST THE CF IMAGE

 In the vein of our walk-before-we-run motif, let’s setup the yml for running just CF

 Create a folder, to hold these, such as c:\docker-compose

 In that folder, create another called c:\docker-compose\cf-alone

 In that folder, create or copy earlier coldfusion.env file, with:

acceptEULA=YES

password=123

 And create there a docker-compose.yml with text on following page…

54



Charlie Arehart

CArehart.org

@carehart

DOCKER-COMPOSE 

OF JUST THE CF IMAGE (CONT)

version: "3"

services:

cf:

container_name: cf

image: eaps-docker-coldfusion.bintray.io/cf/coldfusion:latest-2018

ports:

- "8500:8500"

env_file:

- coldfusion.env

55



Charlie Arehart

CArehart.org

@carehart

DOCKER-COMPOSE 

OF JUST THE CF IMAGE (CONT)

 Note that indentation must be present and consistent (tabs or spaces)

 Now go to command line, to that cf-alone directory

 Issue docker-compose up

 If all goes well, display of logs will show CF coming up

 When complete, should be able to visit localhost:8500 as before

 Just like with docker run, without -d, we see logs from compose svc(s)

 Unlike docker run, if we use ctrl-c to get back to cmd line, stops svc(s) in compose

 Could use –d when starting it, as in docker-compose up -d

 Can also open another command prompt and work from there also

56



Charlie Arehart

CArehart.org

@carehart

MANAGING DOCKER-COMPOSE 

 Just like with docker mgt of container, we can manage compose

 docker-compose ps

 docker-compose exec

 docker-compose logs

 docker-compose kill, and more

 Run docker-compose (no args) for commands, and --help to any cmd

 Can do docker-compose down, to bring down what was brought up

 Do need to be in the same directory as the docker-compose.yml file

 Do that also to remove svc containers, if you ctrl-c on up (while showing logs)

57



Charlie Arehart

CArehart.org

@carehart

DOCKER COMPOSE FOR OTHER 

INTEGRATING OTHER CF IMAGES

 Let’s look at

 CF and PMT

 CF and Redis for CF images

58



Charlie Arehart

CArehart.org

@carehart

TROUBLESHOOTING DOCKER

59



Charlie Arehart

CArehart.org

@carehart

DOCKER LOGS

 Most images will create some form of logs, very useful for debugging

 If we just run (without -d, for “daemon mode”), the container will show logs on screen

 Let’s try starting a CF image without that

 docker run -p 8500:8500 -e acceptEULA=YES --rm eaps-docker-

coldfusion.bintray.io/cf/coldfusion:latest-2018

 If we wanted to get back to cmd line, can use ctrl-c

 Can also access logs for a container using docker logs <container>

 Note that this is only whatever logs are written to “stdout”

 In CF, this is primarily what’s in coldfusion-out.log

 There are solutions to get more logged, beyond scope of this workshop

60



Charlie Arehart

CArehart.org

@carehart

EXECUTING CMDLINE INSIDE IMAGE

 Docker offers a command to execute commands inside of container

 Can be very helpful for debugging container issues

 Use docker exec <container> <cmd>

 For example, can issue a Linux LS (on Linux image) as docker exec <container> ls

 For Linux images (like CF’s) which support bash shell, can get to it within container

 docker exec <container> bash

 Then can use any available Linux commands. Some things you expect may not be there

 Can exit with “exit”

61



Charlie Arehart

CArehart.org

@carehart

DOCKER STATS

 Nifty tool to see resource use of running containers

 Simply Docker stats

 Note how it stays on-screen, refreshing

 Cancel with ctrl-c, see also --no-stream arg to get just a single line output

 Really much more we could talk about regarding docker troubleshooting

 Again, could be its own day. Just whetting your whistle here

62



Charlie Arehart

CArehart.org

@carehart

MAY NEED TO INCREASE MEM, DISK, 

CPU ALLOCATED TO DOCKER

 With Docker Desktop, for Windows, go to tray, right-click on Docker icon

 Go to Advanced, see sliders there to control

 Set memory especially to size suited to your available ram

 And what CF or other images you’re running, their memory (heap) size, etc.

63



Charlie Arehart

CArehart.org

@carehart

MONITORING DOCKER IMAGES

 You can monitor docker images from tools outside the image (such as via http)

 You can also implement monitoring WITHIN the image

 There are many generic monitoring/APM tools

 To see how to monitor CF image with FusionReactor, see

 https://github.com/intergral/fusionreactor-docker/tree/master/coldfusion

 And of course we saw previously the available CF PMT image

64



Charlie Arehart

CArehart.org

@carehart

WRAPPING UP

65



Charlie Arehart

CArehart.org

@carehart

MOVING TO ORCHESTRATION

 Once you have yml for compose, it’s barely another step to use docker swarm 

 Which can add much more capability to manage instances, across machines

 It’s included with Docker Desktop, so easy to try out. Also at PWD

 Matt Clemente had a session on that yesterday, and nice blog posts

 Kubernetes is the next evolution in orchestration

 It too is offered in Docker Desktop

 And then you can deploy your images and orchestration on cloud providers like 

AWS, Azure, Google Cloud, Digital Ocean

66



Charlie Arehart

CArehart.org

@carehart

DEVELOPMENT/TESTING AND CI/CD

 We’re about out of time. I just wanted to at least plant a seed for you

 If you are already doing CI/CD, you should explore Docker for what it brings to that

 More capabilities for automated testing, deployment, app upgrades, etc.

 Google searching on the topic will find ample discussions

67



Charlie Arehart

CArehart.org

@carehart

WHY DEVELOPERS LOVE DOCKER

 Phew, so that was our whirlwind tour of Docker, and CF Docker images

 Hope you better appreciate value of running Docker and especially using it with CF

 and how using it with still other software can make your job easier

 Let’s end with “10 Reasons Developers Love Docker” (from Docker) …

68



Charlie Arehart

CArehart.org

@carehart

WHY DEVELOPERS LOVE DOCKER 

(CONT)

 It works on everyone’s machine

 Takes the pain out of CI/CD

 Boosts your career

 Makes cool tech accessible

 Raises productivity

 Standardize Development + Deployments

 Makes cloud migration easy

 Application upgrades are a lot easier

 And, if an app breaks, it’s easy to fix

 It’s easy to try out new apps

69



Charlie Arehart

CArehart.org

@carehart

LEARNING MORE ON YOUR OWN

 There are some topics we’ve only barely touched on

 And some we’ve not even covered (that some may think should have been)

 See resources section in appendix for many useful resources

 Many geared to getting started

 Some organized as courses of their own (many free or cheap)

 I will offer a blog post soon pointing to many that have helped me

70



Charlie Arehart

CArehart.org

@carehart

GOING FORTH

 Try running again the various demos, to reinforce points

 Raise any issues on the Adobe bug tracker (tracker.adobe.com)

 Once you choose CF, it has “components” for “containers – docker …”

 I plan a 30-days to “Getting Started with Docker and the CF Images”

 Reach out to me for question on the materials, specific topics covered

 charlie@carehart.org, or on most social media as carehart

 One last thing: trying to start the CFMeetup again, see coldfusionmeetup.com

 Any questions now? (if we have time)

71


