
ARE SPIDERS EATING YOUR
SERVERS?
THE IMPACT OF THEIR UNEXPECTED LOAD
AND HOW TO COUNTER IT

Charlie Arehart, Independent Consultant

CF Server Troubleshooter

charlie@carehart.org

@carehart (Tw, Fb, Li, Slack)

Updated July 17, 2017

SOME INTRO
QUESTIONS FOR YOU

THERE IS GOOD NEWS

 Good news: there are solutions to mitigate impact, perhaps reduce load

 That said, some automated requests are getting smarter, harder to control

 Beware: think your intranet/private/login-required site is safe from impact?

 We’ll cover all this and more in this talk

ABOUT ME

 Focus on CF server troubleshooting, as an independent consultant

 Satisfaction guaranteed. More on rates, approach, etc at carehart.org/consulting

 Love to share info, with my clients and the community

 Contributor to/creator of many CF community resources

 Online CFMeetup, CF411.com, UGTV, CF911.com, CFUpdate.com, and more

 I’m also manning the Intergral (FusionReactor) booth for them

TOPICS

 Understanding automated requests

 The nature of such automated requests (many, varied, not always friendly)

 How we can generally identify such requests

 Their generally unexpected volume

 The impact of such request volume, CF-specific and more generally

 Observing the volume in your environment

 Dealing with automated requests: tools and techniques

 Preventing undesirable ones

 Mitigating the impact of expected ones, CF-specifically and more generally

 Resources for more

 Slides at carehart.org/presentations

UNDERSTANDING AUTOMATED
REQUESTS

THE NATURE OF SUCH AUTOMATED
REQUESTS: CRAWLERS

 Of course most common automated agents are search engine crawlers

 The intent/approach of such search engine crawlers/bots/spiders

 There are many:

 Some legit and desirable (google, bing, yahoo, etc.)

 Some legit but maybe not your market: Yandex (Russian search engine), Baidu
(China, also SoGou, Youdau), Goo (Japan), Naver (Korea), etc.

 Some may be legit but perhaps unfamiliar to you (Rogerbot, for seomoz.org,
mj12bot, for majestic12.co.uk)

 Analogy: restaurant scrambling to serve crush of non-paying reviewers

 …

THE NATURE OF SUCH AUTOMATED
REQUESTS: CRAWLERS (CONT.)

 Some crawlers visit your site for other purposes:

 Some are looking to find copyright violations (maybe ok)

 Some grab ecommerce site prices to show elsewhere (may be dubious)

 Some grab content to sell to competitors context about your site/business (not cool)

 Then there are RSS/atom readers/services, calling into feeds on your sever

 And you may expose APIs, web and REST services that are called in auto. ways

 And before you feel safe with non-public/intranet site, behind firewall or login

 Beware: site may be crawled by internal search appliances

 But that’s not all (that can affect both intranet and traditional web sites)…

THE NATURE OF SUCH AUTOMATED
REQUESTS: OTHER CHECKS

 And how about load balancer health checks?

 And monitoring checks (setup by you, your IT folks, or your clients)?

 Consider also site security scans

 May be run by folks in your IT org, to find vulnerabilities

 These often run requests at high rates, trying many ways to “break in”

 Analogy: restaurant scrambling to serve free-loading family members

THE NATURE OF SUCH AUTOMATED
REQUESTS: ERRORS

 And consider also the added impact of error handling of those, or 404s

 Still another cause: coding mistakes leading to repeated requests

 Such as a runaway ajax client call

THE NATURE OF SUCH AUTOMATED
REQUESTS: MISCREANTS

 And of course hackers, thieves, miscreants attempting increasing harm:

 Comment and other forms of spam

 Theft of content

 Break-in/takeover of accounts

 Including outsiders running security scans to find vulnerabilities

 Fraudulent transactions

 Denial of service (ddos)

 Which could be as simple as them running load test tools against your server

 Analogy: restaurant scrambling to serve folks stealing from the register,
blocking the door, etc.

 OK, so now we know some common kinds of automated requests…

IDENTIFYING SUCH BOTS

 Requests typically self-identify with a “user agent” header

 Browsers identify the kind of browser they are (Chrome, FF, Safari, Opera, IE, etc.)

 And most legit bots will also provide a user agent (UA) string

 Some bots also provide a URL in the UA as well

 A page to explain perhaps what they do, how to manage their requests

 Nice free web site to lookup and better understand UA strings

 https://www.distilnetworks.com/bot-directory/

 Gives ratings (good/bad), known IP ranges, more

IDENTIFYING SUCH BOTS (CONT.)

 Do beware: a requestor can lie about their user agent

 Some may look like “real browser”, others like “legit spider”, to throw you off

 If you see a “Googlebot” UA from an IP on Amazon, they’re a liar!

 Still others may provide no user agent at all

 And we could use that against them, in rejecting requests without any UA

 Let’s talk about other ways to identify them, then how we may handle them

BOT CHARACTERISTICS WE MIGHT
WATCH FOR TO BLOCK THEM

 Most automated agents also present no cookie (important impact, later)

 Of course, a real first-time user will also have no cookie from your site

 But if we get many frequent requests from same IP with no cookie, we might
count that against them

 Many automated requests might show no “referrer” header

 Of course, neither will a request where someone types your URL into a browser

 IP addresses of many requests at once may be same, or in a small range

 Or may have same UA but totally random IPs, which could be suspicious

 We’ll revisit consideration of such characteristics under “mitigation” later

THEIR GENERALLY UNEXPECTED VOLUME

 So again, why might all this be a problem?...

 Most of these automated requests (of all types) tend to come every day

 Generally hitting ALL your site pages

 And a given single “page” may be reached by different URLs (bot won’t know)

 Not unusual for folks to have “paging” links, accessing all pages of a type

 For instance, all products, and as viewed over all categories, then all vendors, etc

 And remember, each kind of bot may visit thousands of your pages per day

 This is why it’s not unusual to find these being 80% of site requests!

 And so what? ….

THE IMPACT OF SUCH REQUESTS

GENERAL IMPACT

 Of course, such high volumes of requests have impact on:

 General compute resources (cpu, memory, disk)

 Some may be tempted to increase hardware to “handle the site’s load”

 Consider also the bandwidth used to serve each page requested

 And all associated files (CSS, JS, image files)

 Perhaps millions per day, per bot, day after day ad infinitum

 Someone‘s paying for that bandwidth!

 Then consider impact on entire infrastructure

 Web server, application server, database server, san/nas, network, perhaps mail
server, etc.

 For CFML pages specifically, impact is even more significant…

CF-SPECIFIC IMPACT: SESSIONS

 First, session and client creation

 Talking here about CF sessions (or J2EE sessions), stored in memory of CF/heap

 Not referring to “web sessions” as tracked by web servers, Google Analytics, etc

 CF sessions are used to track data for a user across many requests

 Based on sessionid cookie being passed from client on each request

 But most automated agents send no cookie, thus creating a new
session/client for EACH page requested!

 Not unusual for me to help folks find 20k, 100k, or more “active” sessions!

CF-SPECIFIC IMPACT: SESSIONS (CONT.)

 Such high session count could have impact on heap use within CF, of course

 And “weight” of session influenced by what your code puts into session

 Consider also session timeout: how long unused sessions remain in memory

 May be hours or even days in some setups

 Max and default timeout set in CF admin, of course

 Can be overridden in application.cfc/cfm

 Longer timeout X more mem per session X more sessions = more heap

CF-SPECIFIC IMPACT: SESSIONS (CONT.)

 Still worse: consider your session startup code, running for each new “session”

 Talking about onsessionstart in application.cfc

 Or perhaps code in application.cfm within a test for session existence

 You may create queries, CFCs, arrays/structs, stored in session scope for user

 Consider then the incredibly high rate of executions per minute, hour, day

 May be executed FAR more often than the developer ever anticipated

CF-SPECIFIC IMPACT: CLIENT VARS

 Consider also impact if your code enables client variables
(clientmanagement=“yes”)

 Default behavior is that each request creates/updates client repository “global
variables” (hitcount, last visit)

 So that’s still more activity per request

 Worse: such automated requests create NEW client repo entries on EACH
request!

 Bad enough if these are stored in a database: lots of i/o, possible congestion

 Again to track information for what may be just a single visit ever

 Worst still if client vars might be stored in registry

 Or worst of all, if on *nix where such “registry” processing is really just a “reg” file!

CF-SPECIFIC IMPACT: ERRORS & MORE

 Consider also impact of spiders/bots on your 404 and error handing

 Automated agents may call many pages that don’t exist (repeatedly)

 Or they may call pages in an unexpected “order”, triggering errors

 Or their high volume may create still more errors

 Consider needless filling of caches (query cache, template cache, etc)

 Consider also impact on cfhttp calls your code may make to other sites

 Maybe to obtain information, or to share it, on each/many/most requests

 Such high volume of automated requests may cause YOU to be abusing others

 Your requests may be throttled by such other sites, affecting your “real” users

CF-SPECIFIC IMPACT (CONT.)

 So I hope I’ve made the case that you may well need to worry

 How can you know if you should?

OBSERVING VOLUME IN YOUR
ENVIRONMENT

OVERVIEW OF A COUPLE OF SIMPLE
WAYS

 There are a couple of relatively straightforward ways to observe such traffic

 You may know that some built-in tools log every request

 And tools exist (free and commercial) to help analyze such logs

 Such logs can also be configured to track user agent, cookies, referrer

 Some tools also let you track count of sessions

 Let’s look at these a bit more closely

ANALYZING LOGGING OF REQUESTS

 Web server logs (IIS, Apache, nginx) track every request

 Of course, they track requests of every type: images, js, css, etc.

 These can optionally be configured to track user agent, cookies, referrer

 Tools exist to monitor such web server logs, track web site “traffic”

 Some are more “marketing” oriented, may literally hide spider/bot traffic!

 Some may well distinguish spider traffic

 Other tools can analyze an CSV logs, which is useful because …

ANALYZING LOGGING OF REQUESTS
(CONT.)

 ColdFusion (Tomcat) “access” logs can also be enabled to track CF requests

 Turned on by default in CF10, off by default in CF11, 2016

 These track ONLY CF page requests, of course, assuming CF is behind a web server

 These can also be configured to track user agent, cookie, referrer

 FusionReactor logs also track every request

 And can be configured to track UA; already tracks incoming session cookies if any

 Tools for log analysis: http://www.cf411.com/loganal

TRACKING OF REQUESTS VIA
BEACONS

 Again there are tools/services that can track visits via tracking beacons

 You implement a small bit of javascript in your code

 When that page is visited, a request is made from the client to some server service,
which tracks requests

 Examples: Google Analytics, Google and Bing Webmaster Tools, and more

 And better versions of such tools do distinguish spider/bot traffic

 Do beware, some “clients” won’t execute the Javascript that triggers such
tracking

 And so some such automated requests may not be tracked at all

TRACKING SESSIONS AND MORE

 CF10 and above track session count in metrics.log; enabled in CF Admin

 FusionReactor and CF Enterprise Svr Monitor track current count of CF sessions

 FR also tracks session count over time and across restarts, in realtimestats.log

 Beyond sessions, CF tracks cfhttp calls in cfhttp.log

 404s and application errors tracked in application.log, or handled by your app

 So once you confirm you DO have lots of automated traffic, how do you
handle it?...

DEALING WITH AUTOMATED
REQUESTS: TOOLS AND TECHNIQUES

PREVENTING UNDESIRABLE ONES

 First thought may be “block” undesirable requests by IP address

 Beware: most come from a block of them (and bad guys may falsify IP)

 Becomes game of “whack-a-mole”

 May think to block by user agent

 Beware: some bad guys present legit-looking user agents

 The black hats are trying always to stay a step ahead of the white hats

 Consider also Perimeterx’s “4 generations of bots”

 https://www.perimeterx.com/resources/4th-gen-bots-whitepaper

 Still, for a large amount of most common automated traffic, these simplistic
approaches may be better than doing nothing (more in a moment)

MITIGATING THE IMPACT OF EXPECTED
ONES, MORE GENERALLY

 Simplistic solutions to manage such agents may exist already in your env

 Robots.txt: simple, but could be ignored

 Web server IP blocking features: like playing whack-a-mole

 URL rewrite tools could block requests by a variety of characteristics

 IIS request filtering can block by user agent string

 Any of these might work just fine for some, but may be too simplistic for many

 There are still other options…

MITIGATING THE IMPACT OF EXPECTED
ONES, MORE GENERALLY (CONT.)

 Some firewalls (software or hardware) can manage bots

 Some web app firewall solutions in or available for most web servers can help

 Indeed, some cloud services offer protections against spiders/bots/hacks

 https://aws.amazon.com/blogs/aws/new-aws-waf/

 https://azure.microsoft.com/en-us/blog/azure-web-application-firewall-waf-
generally-available/

 You could also consider also web content caching proxy solutions

 To at least reduce impact reaching your server

 Or we can get still more sophisticated about this specific problem…

MITIGATING THE IMPACT OF EXPECTED
ONES, MORE GENERALLY (CONT.)

 There are tools/services that detect/mitigate negative bot impact

 Some free, some commercial

 Some easily implemented, others even offered as SAAS with virtually no change

 Examples: Distil, Incapsula, Shieldsquare, PerimeterX, Akamai

 These companies are making it their job to watch for and block bots

 Even the most sophisticated ones

 Most offer options to report-only at first, and then tweak/turn on to block bad guys

 And may want to consider those focused more on blocking hacks rather than
bots, per se

 Shape Security, Securi, Cloudflare, etc

 Now on to more CF-specific mitigations…

MITIGATING THE IMPACT OF EXPECTED
ONES, CF-SPECIFICALLY

 May want to modify session timeout on per-request basis, lower for bots

 Consider watching programmatically for characteristics like:

 No user agent, no referrer, and no cookie

 Can implement either in:

 In application.cfm, where you can vary cfapplication sessiontimeout

 In application.cfc, may not want to vary this.sessiontimeout (applies to loaded
app)

 Instead, could handle in onrequestend

 Can either “invalidate” session, or lower session timeout for that request only via java

MITIGATING THE IMPACT OF EXPECTED
ONES, CF-SPECIFICALLY (CONT.)

 May also want to reconsider coding choices in your session startup code

 Maybe don’t store large amounts of info at session startup (queries, arrays, structs,
CFCs) if request is determined to be for an automated agent

 Given that session won’t be re-used anyway by most automated request agents

 Also, reconsider error handling, to only respond to cfm/cfc pages

 And maybe html pages if you must, but not image/css/js files

 Consider admin config options related to sessions and/or client variables

 Session timeout: reconsider default/max times, and times set per app

 Reconsider client var storage options (cookie vs db/registry)

MITIGATING THE IMPACT OF EXPECTED
ONES, CF-SPECIFICALLY (CONT.)

 Could also add code to at least throttle excessively frequent requests

 http://www.carehart.org/blog/client/index.cfm/2010/5/21/throttling_by_ip_address

 Note that ContentBox incorporates a variant this code, enabled by a checkbox

 “Outside the box” possibility (for CF Enterprise, Lucee/Railo)

 Create a separate instance to JUST serve automated traffic

 Direct such traffic there with web server rewrite features

 So, phew, that’s a lot to take in!

 Understanding issue, mitigating it

 I’ve provided a broad overview

 You may want to dig in to the topic further

 There are many resources that focus on the topic generically in significant depth

RESOURCES

 http://www.itproportal.com/2015/04/25/7-ways-bots-hurt-website/

 https://searchenginewatch.com/sew/news/2067357/bye-bye-crawler-
blocking-parasites

 https://blog.cloudflare.com/introducing-scrapeshield-discover-defend-dete/

 https://www.digitalcommerce360.com/2016/11/11/bad-bots-are-real-heres-
how-hayneedle-fought-them/

 https://www.incapsula.com/blog/bot-traffic-report-2016.html

 http://scraping.pro

 https://resources.distilnetworks.com/

 https://www.incapsula.com/resources/

 https://www.perimeterx.com/resources/

 https://www.cloudflare.com/resources/

SUMMARY

 The nature, volume and impact of automated requests is often hidden

 It is possible to observe the volume, mitigate the impact, perhaps easily

 Can lead to a substantial improvement in performance, bandwidth savings

 Again, my contact info for follow-up:

 Charlie Arehart

 charlie@carehart.org

 @carehart (Tw, Fb, Li, Slack)

 carehart.org/consulting

 Thanks, and hope you’ve enjoyed the rest of the conference

 Come see me at the FusionReactor booth, where I am manning it for them

