
108 Tools The Fusion Authority Quarterly Update

Many CFML developers really wish their arsenal of tools included an interactive step
debugger. While most developers may assume that using CFOUTPUT and CFDUMP, among other

techniques, can do everything such a tool would do, they have probably run into limitations with
these techniques.. I have good news for both camps.

Interactive step debugging is now available to CFML developers in the recent release of
FusionDebug, from the same folks who brought us the FusionReactor monitoring tool. Available
at http://www.fusiondebug.com, the tool can help solve many problems where CFOUTPUT and CFDUMP
are not options, such as debugging CFCs exposed as web services, or within CFCs with the
output=”no” option. Still other output-challenged spots exist within CFSILENT, or when generating
XML (in which case a CFDUMP could be inappropriate).

Sure, CFTRACE and CFLOG can write their output to a !le instead, but all that can be a hassle, and what
if you simply aren’t authorized to edit the template you want to debug? Besides web services,
debugging challenges can crop up when debugging CFCs and CFML code that are called from Flex,
Flash Remoting, or Ajax requests. FusionDebug can be used for all of these, as well as for debugging
code running on a remote server. These are just a few of the tool’s many powerful features.

In this article, I’d like to introduce the concept and the tool, then show what it can do for you, and
!nally explain why developers, even those who would dismiss debuggers, should give it serious
consideration. Those already familiar with debuggers can skip to that last section. Then if I’ve
piqued your interest, you can return to the beginning for a discussion of the tool’s features, which
may exceed expectations, based on your experiences with other such tools.

What is Interactive (Step) Debugging?
Interactive or step debugging has got nothing to do with the debugging output at the bottom
of your CFML page. Have you ever wished you could watch as your program executes from line to
line? That’s exactly what a step debugger does for you. More than that, you can watch the values
of expressions and variables—and even change variables on the "y.

Such tools are common in other languages such as Java, .NET, JavaScript, Flex and Flash. CFML
developers who have not used these may not even have noticed that we’ve lacked a debugger.
Some may know that there was indeed interactive debugging in CFML in ColdFusion 4 and 5, by
way of ColdFusion Studio (now HomeSite+). But Adobe (then Macromedia) chose not to carry
that feature forward into CFMX, so FusionDebug represents the !rst and only way to do step
debugging in CFML for ColdFusion MX 6.1 and 7. Those who have a bad taste left from their
ColdFusion 4/5 days can take heart since this is a commercial product. There is a company behind
FusionDebug to help support, improve, and evangelize it.

About FusionDebug
FusionDebug is a commercial plug-in on top of the free Eclipse framework, like FlexBuilder. Priced
at US$ 299, there’s currently an available 10% discount code (CFCOMMUNITY) as well as volume
discounts and a 20-day free trial. Better still, just announced at the end of

FusionDebug Explained: Interactive Step
Debugging for CFML

By Charlie Arehart

September is a discount of 20% as well as a new “Community Edition” also priced at $99.
See the website, http://www.fusiondebug.com, for more.

Even so, your !rst response may be that you don’t think you should have to pay for such a product,
but it’s really a rather small price to pay if you will bene!t from debugging.

Your second response, if you don’t use Eclipse currently, may be to worry about having to use
it. First, note that you don’t need to give up your favorite CFML editor, whether it’s DreamWeaver MX,

ColdFusion Studio, HomeSite+, CFEclipse, or whatever. Further, you need to know only a minimal amount

of Eclipse functionality—which is very easy to learn—to use FusionDebug.

Getting Started
You will need to download Eclipse, which is free. You may already have it installed if you have
FlexBuilder or CFEclipse. It’s very easy to get and install it if you don’t and the process is explained
in the FusionDebug User Guide, available online at http://www.fusion-reactor.com/fusiondebug/
helpDocs/FusionDebug_User_Guide.pdf.

FusionDebug also requires just one minor single-line change in the jvm.con!g !le for the CFML
server you’ll be debugging against, which is also easy to do and well-documented in the User
Guide. There you indicate a port on which the debugger will listen, and then you do a minor
setup in Eclipse to enable debugging against that server. All of this is well-documented and
simple. I’d like to skip those details and focus on how to use the tool.

First Stop: Setting a Breakpoint
After opening a !le in the FusionDebug environment, you can begin debugging by telling
the tool that you want to stop execution on a given line of CFML code. This is called setting a
“breakpoint”. You just right-click on the line of code in the Eclipse editor, and choose Toggle Line

Breakpoint.

When that CFML template is requested
and that line of code is about to be
executed, the program will halt and the
FusionDebug interface will re"ect that
execution has halted. It will open the
!le (if it’s not already open) and show
the line of code on which execution has
stopped (See !gure at left).

The blue dot to the left of the line shows
where a breakpoint has been set. The blue arrow and the shading on the line indicate that control
has halted there. (The browser window in which the page had been requested will generally look
as though the request is just taking a long time.)

Indeed, a really cool thing about the way FusionDebug works is that it can intercept a request
from any user, not just the user who has initiated the debugging session.

• This means that you can use it to intercept a request other than one you yourself initiated.
How often have you tried to understand why a user is having a problem in a shared server
environment (such as test, staging, or even production) that you couldn’t recreate locally?

• It can also intercept a request via web services, Flex, Flash, Flash Remoting, or Ajax. More on all
that later.

The Fusion Authority Quarterly Update Tools 109

110 Tools The Fusion Authority Quarterly Update

The problem, of course, is that it also means that anyone on the server being debugged who also
runs that request will also be a#ected when you set a breakpoint. So caution is certainly advised in
setting breakpoints in production. With power comes responsibility. Still, it’s nifty that you can.

Observing Program State Information (Variables)
Being able to stop the program in its tracks may seem only mildly interesting, but you can learn
a lot about what was going on in the program at the time. For instance, you can see the values
of all the variables that may have been set in the program or perhaps in other templates before
this one executed.

FusionDebug provides a “Variables” view, which in the case of the code above would show the
following (See image below).

You can see that a structure with a key and
an array has been created. Note how you
could expand the local “variables” scope
as well as any application, session, server,
and other scopes. Indeed, if we were
stopped within a method (CFFUNCTION or
CFSCRIPT function), we could also see the
local (“var”) and, in a CFC method, the
“this” scopes. Isn’t that a whole lot easier

than putting in CFDUMPS, and CFOUTPUT, and having to remember to remove them?

If you had a large number of variables that would make it tedious to explore this Variables view, another
available option is “watched expressions”. This is even more like using old-style outputs, except they
never send output to the browser. Instead, the results are shown inside the debugger. With this

“Expressions” panel, you can choose to
watch any variable or expression. (An
expression can be anything you might
put on the right side of the “=” of a
CFSET, or inside a CFIF condition, including
variables, functions, and so on.) (See

Expression image to the left)

You can enter expressions by right-clicking in the
Expressions View, selecting Add Watch Expression, and
typing in the expression manually. You can also highlight
an expression in the code editor, then right-click and
select Watch Expression (See !rgure to the right).

Setting Variables on the Fly
Perhaps one of the most compelling things about step
debuggers is that they permit you to do something you
simply can’t do otherwise: you can alter the value of any
variable in your code while the program is running. All
you need to do is right-click on the variable in the code
editor (while at a breakpoint) and choose Set Variable. You
then indicate the value, and that will take e#ect for the
remainder of the request. Nifty!

Stepping Through Lines of Code
It’s useful to stop at one point in the program and see all this, but another important fundamental
feature remains — the ability to step through your code.

Consider the following code, stopped at the indicated breakpoint:

How do you tell it to proceed? Another
pane in the FusionDebug interface,
the Stack Trace pane, looks like !gure
to the left:
The icons at the top of the pane let you
control execution. Perhaps the most
commonly used icon is the one on the
far right in the screenshot to the left.
This is called Step Over, and it simply
executes the next line of code. Other
options exist outside of what’s visible
in the screenshot. All of the things you
can do at a breakpoint apply while
stepping through code as well.

Also available are options to indicate
whether you’d want to follow the "ow of execution into another !le, such as a custom tag, CFC
or included !le. Note that the screenshot showing the code and breakpoint above indicates that
the next line of code is a custom tag (cf_getEmployee). If we were to use Step Into, the icon to
the left of Step Over, then FusionDebug would open the getemployee.cfm custom tag and stop
at the !rst line of CFML within that. If the !rst line of CFML in that custom tag appeared on line 1,
the stack trace would look like the following (which shows it stopped on line 1):

If you didn’t want to step any more
within the nested !le, you could use
an available Step Return button. And
if you didn’t want to step any more
in any of the !les in the request, you
could use the left-most of those icons
(what looks like a green arrow) which

is called Resume. It would let the request run to completion (unless it hit another breakpoint).

And Still Much More…
There’s a lot more to show, but this should be enough to whet the whistle of those who haven’t
explored a debugger before. There are several learning resources on the FusionDebug web site,
in addition to the User Guide mentioned above:

Information on additional features: http://www.fusion-reactor.com/fusiondebug/features.html

Captivate videos demonstrating their use:
http://www.fusion-reactor.com/fusiondebug/gettingStarted.html

Additional screenshots: http://www.fusion-reactor.com/fusiondebug/screenshots.html

The Fusion Authority Quarterly Update Tools 111

112 Tools The Fusion Authority Quarterly Update

Why Use FusionDebug When You Can Just Use CFDUMP? A Dozen Reasons
Some will ask, “Why should I bother with or care about step debugging? I can get all I need
with CFDUMP and CFOUTPUT.” Some will go so far as to proclaim that they’ve coded for several years
without a debugger, thank you very much, and just are not interested.

Still others may have prior experience with a debugger that has left preconceived notions of what
they think FusionDebug can—or can’t—do.

I’d like to conclude this article by showing the many ways (twelve, to start) that interactive step
debugging can indeed be a valuable tool in the arsenal of a CFML developer, to solve problems
that might otherwise be very di*cult.

You Can’t Always Do a CFOUTPUT/CFDUMP
So why not rely solely on judicious (or indeed, copious) CFOUTPUTS and CFDUMPS? Well, there are
simply places where you can’t create output!

For example, when run within a CFC or method where OUTPUT=”no” has been set, CFDUMP and
CFOUTPUT create no output. You may think, “But I can just set it to yes.” But there are times when
doing so will introduce errors or otherwise unexpected results due to other code you’ve written.

Another situation in which you can’t create output is within CFSILENT. No output is rendered to the
browser. CFSILENT is commonly used, especially in complex apps and in most frameworks, and you
will have to disable it by !nding and editing the !le that sets it so that you can debug. Again, there
may be a negative impact by disabling the CFSILENT when the code after it executes, generating
perhaps unexpected whitespace or output.

You could use CFTRACE or CFLOG to write output to a log !le, true, but it’s certainly not as simple as
dumping output to the screen.

CFABORT is another common tag used when inserting CFOUTPUT and CFDUMP, but there are also times
when doing CFABORT can have unexpected consequences.

Finally, you’ll also need to remember to set all those changes back. More on that later. All these
are reasons that sometimes you can’t or may want to think twice about adding in code to do
CFOUTPUT/CFDUMP.

You Don’t Always Have a Browser to Output to (Flex, Ajax, Web Services)
What if you’re writing CFML code that is called by a Flex or Ajax client, or is a web service? You
can’t then always easily add debugging output—and you certainly can’t do a CFDUMP, if the client
is expecting XML or some other datatype, since CFDUMP typically creates a big HTML table.

FusionDebug, on the other hand, can indeed be used for debugging requests from Flex, Flash Remoting,

Ajax and web services apps. In fact, it can intercept a call from any kind of client that requests a
CFML page or CFC. Note as well that if you are using the debugger in FlexBuilder (which is also
an Eclipse-based debugger), the Eclipse debugging “perspectives” will switch automatically
between debugging Flex and CFML code.

You Can Intercept and Debug a Request From Any User, Not Just the Developer
This is a very important point, and actually is an extension of the point above. Unlike the ColdFusion
4/5 debugger, FusionDebug is NOT limited to debugging only what you as a developer can browse
yourself. It can intercept and show to the debugging developer the step-by-step execution of any
template, CFC, custom tag or included !le run by anyone in any manner. So you can use it to
debug when someone else is running the request, where writing output to the browser would
go to someone other than the developer. I know that may sound a warning bell to some. Hold
that thought for a moment, and through the next couple of points.

You Can Debug a Remote Machine, and Against Shared Servers
This may be the most powerful feature. FusionDebug can do debugging against any CFMX server
for which it’s been con!gured. It doesn’t need to be just a CF server on the same machine that’s
running Eclipse. How often have you found something strange happening in production that
you can’t recreate in development? With FusionDebug, a real end user can run a request that
causes a problem while you watch and debug it.

Of course, the above three points represent a two-edged sword. You can’t currently limit the
debugging to take place only for a given user, so if indeed you are using it on a server being
used by multiple users, it will impact anyone who makes a request for that !le while you have
debugging enabled for it.

But let me be clear: for this to happen, a developer would have to a) open Eclipse/FusionDebug, b)
turn on debugging against that application/project, c) enable a breakpoint for a given template,
and the user would need to d) request that page and e) run through that code that would f) hit
that breakpoint.

The user would see the page appear to hang until the developer who enabled debugging
responded to let the page !nish loading. It’s just a responsibility to be aware of, which comes
with the power of the tool. (There’s also a modest performance impact in con!guring the server’s
JVM con!g to support debugging, so you may want to think carefully about leaving it enabled all
the time in production.)

There’s No Need to Change Code to Get Debugging Info
It may not always be desirable or possible to edit a !le to add debugging code. For instance, it’s
clearly less palatable to just throw some CFOUTPUT/CFDUMP tags in production. Or perhaps you’re
debugging some code that someone has ruled should not be edited, or it’s in a directory you
don’t have access to. And again, if you DO edit the code to add debugging tags, you have to
remember to remove them when done. How often do we see code still showing debug output?
FusionDebug does not require that you edit the code.

You Don’t Need to Be Able to Enable ColdFusion’s Debugging Output
It’s worth noting that by using FusionDebug, you don’t need to enable ColdFusion’s debugging
output. Whether in production or simply on a server where you can’t get debugging turned on,
this can be a valuable bene!t.

You Can Change the Value of Variables on the Fly During Execution
FusionDebug also lets you change the value of variables within the code being debugged, on the
"y, to temporarily alter the variable until the end of the running request. This is easier than editing
the code to change the value for debugging purposes.

Sometimes a Simple CFOUTPUT/CFDUMP Will Not Su!ce to Solve a Problem
While you’re stopped at a breakpoint, you can view the value of ALL variables in ALL scopes.
FusionDebug presents a very easy to use tree view to traverse and view the scopes. This also
includes query resultsets and more. And since you can view them all, you may be able to see
information or make connections that you might not have thought to dump or output with
traditional approaches.

You Can Use the Debugger to Understand the Flow of Execution of the Request
Still another truly unique feature of a step debugger is that it gives you a clearly visual representation
of the "ow of a request. If you’re ever wondering whether the code went into one IF statement or
loop, or if it included a !le or called a custom tag or called a method in a CFC, these are all things

The Fusion Authority Quarterly Update Tools 113

114 Tools The Fusion Authority Quarterly Update

that you can readily see in FusionDebug. Of course, this is also a great way to introduce a new
developer to your code or CFML in general.

You Can Debug in Situations Where You Don’t Even Know Where in a Complex App
to Try to do CFOUTPUT or CFDUMP
Recall that FusionDebug opens !les as you step through them. When following the "ow of
execution, this can be especially valuable in very complex applications. Let’s consider (just as
one example) a Model-Glue application. When I run the modelgluesamples/legacysamples/
contactmanager/index.cfm and view the !les in the traditional debugging output (showing all
the !les that were used to render the request, including CFM and CFC !les and methods), there
are nearly 150 shown. If something’s amiss, you may be hard pressed to think where to begin.
FusionDebug shows the "ow readily.

One thing that FusionDebug does lack (which the ColdFusion 4/5 debugger had) that would
help, especially in this last case, is a “wildcard” or conditional breakpoint: where it would stop
when a given condition was met. That’s SO valuable in a complex application. You can use it to
!nd out when some condition arises, such as when a variable obtains or exceeds some value, or
is set at all, or when some query exceeds a given execution time. I have requested this feature and
hope it will make it into the product in the future.

You Can View the Stack Trace During Execution
Following onto the previous point, while the traditional CF debugging output shows (at the end
of the page request) what !les were called to run the entire request, it doesn’t really help you to
know which were opened just to get to a particular point within a given template or CFC method.
In FusionDebug, while you’re sitting at a breakpoint, the stack trace pane will show all the !les
that were opened and the line of code executed in each to get to that point.

You Can View the Java Classes Called to Execute Your Code
One last feature, especially for the bit !ddlers out there, is the “Java detail mode” in FusionDebug.
If enabled, it will show in the stack trace pane all the Java classes and methods called to get
to a point of code. If you double-click on a Java class, it will even show you any variables that
were created from that object. For more information, including a screenshot with quick and easy
explanations, see the FusionDebug site:
http://www.fusion-reactor.com/fusiondebug/featureFocus-javaDetailMode.html.

Conclusion
That’s a long list of reasons and benefits, and it’s not even complete. I haven’t yet mentioned
the high-quality—and free—support (just drop a note to support@fusion-reactor.com). I
do hope this introduction to step debugging and to FusionDebug’s interface and features
will help you get started. There are some gotchas worth noting. I elaborate on these
and offer many more points in a series of blog entries I’m doing on FusionDebug, at
 http://carehart.org/blog/client/index.cfm/fusiondebug.

A veteran CFML developer since 1997, Charlie Arehart is a longtime contributor to the community
and recently became a member of the Adobe Community Expert program. Many know he served
as tech editor of the CFDJ until 2003 and was co-author of the CFMX Bible. A certi!ed Advanced CF
Developer and Instructor for CF 4/5/MX, he’s frequently invited to speak to developer conferences
and user groups worldwide. Formerly CTO of New Atlanta (BlueDragon), he is now an independent
contractor and still lives in Alpharetta, GA, where he is president of the Atlanta CFUG.

